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Abstract

Non-interference is a high-level security property
that guarantees the absence of illicit information leak-
ages through executing programs. More precisely,
non-interference for a program assumes a separation be-
tween secret inputs and public inputs on the one hand,
and secret outputs and public outputs on the other hand,
and requires that the value of public outputs does not de-
pend on the value of secret inputs. A common means
to enforce non-interference is to use an informa-
tion flow type system. However, such type systems
are inherently imprecise, and reject many secure pro-
grams, even for simple programming languages. The
purpose of this paper is to investigate logical formula-
tions of non-interference that allow a more precise anal-
ysis of programs. It appears that such formulations are
often sound and complete, and also amenable to inter-
active or automated verification techniques, such as
theorem-proving or model-checking.

We illustrate the applicability of our method in sev-
eral scenarii, including a simple imperative language, a
non-deterministic language, and finally a language with
shared mutable data structures.

1. Introduction

Security models for mobile and embedded code often
guarantee that downloaded applications will not per-
form a number of illegal operations, but also often fail
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to guarantee high-level security properties such as con-
fidentiality, integrity, or availability. Thus it is impor-
tant to develop mechanisms capable of enforcing these
security properties.

Type systems provide a standard means of guar-
anteeing properties of programs; in particular, infor-
mation flow type systems have been used to guar-
antee non-interference in a variety of contexts, see
e.g. [1, 3, 5, 17, 30, 41, 43] and more particularly [35] for
a recent survey of the field. While information flow type
systems provide an attractive means to enforce non-
interference, they often turn out to be overly conserva-
tive in practice. Indeed, many secure programs are re-
jected by information flow type systems. As illustrated
by Joshi and Leino [22], this phenomenon already arises
in the context of simple programming languages: take
for example the program x:=y; x:=0 where y is the se-
cret variable not to be revealed, and x is the public vari-
able which can be observed by the attacker: upon exe-
cution of the program, the final value of x is 0, hence
the attacker will not be able to guess the value of y.
Yet such a program is rejected by a typical information
flow type system [42, 41], on the ground that one pro-
gram fragment taken in isolation is insecure. One rem-
edy to this particular problem is to adopt a control-
flow sensitive analysis [8]. However, information flow
type systems and static analyses for non-interference
are inherently imprecise, and reject too many secure
programs for being widely used in practice. The situa-
tion is even further aggravated if the programming lan-
guage includes some features that are notoriously dif-
ficult to handle precisely with type systems, such as
aliasing or concurrency [38].

General-purpose logics such as Hoare logics or tem-
poral logics provide a standard means to specify and
verify functional and/or behavioral properties of pro-



grams. More recently, several works have advocated
their use to verify security properties of programs: in
particular, Darvas, Hähnle and Sands [11] have re-
cently shown how dynamic logic may be used to ver-
ify non-interference of (sequential) Java programs. One
of their criteria is based on the observation that non-
interference of a program P can be reduced to a prop-
erty about a single program execution (universally
quantified over all possible program inputs) of the pro-
gram P ;P ′, where P ′ is a “renaming” of P .

The objective of this work is to build upon similar
ideas to provide characterizations of non-interference
in Hoare and temporal logics. Our characteriza-
tions, which apply to many languages and differ-
ent notions of non-interference, are based on the
idea of self-composition (that we rediscovered inde-
pendently from [11]), and on the observation that
Hoare logics and temporal logics are sound and of-
ten complete w.r.t. the programming language op-
erational semantics. Further, they enable the use of
existing general-purpose verification tools for verify-
ing non-interference, and even to combine them with
type systems for increasing automation in proofs.

In order to provide the reader with some intu-
ition, let us first consider a simple deterministic im-
perative language featuring sequential composition and
equipped with an evaluation relation 〈P, µ〉 ⇓ ν, where
P is a program and µ, ν are memories, i.e. maps from
the program variables of P to values. Further, as-
sume that every memory µ is split into a public part
low(µ) and a private part high(µ). With such a no-
tation, termination-insensitive non-interference for P
may be cast as for all memories µ, µ′, ν, ν′:

[〈P, µ〉 ⇓ ν ∧ 〈P, µ′〉 ⇓ ν′ ∧ (low µ) = (low µ′)]
⇒ (low ν) = (low ν ′)

Now let ~x be the low program variables of P , i.e.
dom(µL) = dom(νL) = ~x, and let ~y be the high pro-
gram variables of P , i.e. dom(µH) = dom(νH) = ~y,
and let [~x′, ~y′/~x, ~y] be a renaming of the program vari-
ables of P with fresh variables, and let P ′ be the pro-
gram P [~x′, ~y′/~x, ~y]. Then, using ] to denote the dis-
joint union of two memories, and ; to denote sequen-
tial composition, we have 〈P, µ〉 ⇓ ν ∧ 〈P ′, µ′〉 ⇓ ν′

iff 〈P ;P ′, µ ] µ′〉 ⇓ ν]ν
′. Hence we can recast non-

interference as for all memories µ, µ′, ν, ν′:

〈P ;P ′, µ ] µ′〉 ⇓ ν ] ν′ ∧ (low µ) = (low (µ′ ◦ [~x′/~x]))

⇒ (low ν) = (low ν ′ ◦ [~x′/~x]))

Next, we can use programming logics, which are sound
and (relative) complete w.r.t. the operational seman-
tic, to provide an alternative characterization of non-
interference. If we use Hoare triples with a logic that is

expressive enough to capture equality between memo-
ries, then non-interference can be characterized as:

{~x = ~x′}P ;P ′{~x = ~x′}

Let us now instantiate our characterisation to the pro-
gram x:=y; x:=0. Taking x 7→ x′ and y 7→ y′ as the
renaming function, the program is non-interferent iff

{x = x′} x := y; x := 0; x′ := y′; x′ := 0 {x = x′}

which is easy to show using the rules of Hoare logics.
More generally, the characterization provides us with a
means to resort to existing verification tools to prove,
or disprove, non-interference of a program.

Further, the characterization may be extended in
several directions: first, it can be extended to any pro-
gramming language that features an appropriate no-
tion of “independent composition” operator, and that
is equipped with an appropriate logic. We illustrate
this point by considering a programming language with
shared mutable data structures, and by using separa-
tion logic [31, 20] to provide a characterization of non-
interference (see Section 7). Second, it can be extended
to arbitrary relations between inputs and between out-
puts, as in e.g. [15]. This more general form of non-
interference is useful for providing a characterization
of some controlled forms of declassification, such as de-
limited information release, a form of declassification
recently introduced by Sabelfeld and Myers [36].

While Hoare logics are adequate for characterizing
termination insensitive notions of non-interference in
a deterministic setting, we use temporal logic to char-
acterize termination-sensitive non-interference for se-
quential languages and possibilistic non-interference for
non-deterministic languages.

In summary, the main contribution of this paper
is a detailed study of several logical frameworks for
characterizing non-interference, both for sequential and
concurrent non-deterministic programming languages.
Our work extends and systematizes previous character-
izations or criteria for non-interference based on gen-
eral purpose logics, see Subsection 9.5, and allows us to
conclude that such logics can be used in an appropri-
ate fashion to provide a criterion for, or even to char-
acterize non-interference (in the course of the paper,
we pay special attention to the benefits of complete-
ness, see in particular Subsection 9.1). Another minor
contribution of our work is to provide methods to es-
tablish non-interference for languages for which no in-
formation flow type system is known, see in particular
Section 7.



2. Preliminaries

Let Lang be the set of programs specifiable in a given
programming language, with a distinguished program√ ∈ Lang indicating successful termination, and let S,
S′, S1, etc. range over Lang. Further, let Var be the set
of variables which may appear in programs, and let x,
x′, x1, y, z, etc. range over Var. We set var(S) to be the
set of variable names appearing in the text of S, and
for y /∈ var(S), we define S[y/x] to be the same pro-
gram as S where all (free) occurrences of variable x are
changed by variable y.

Assume given a set M be the set of all memories,
and let µ, µ′, etc. range over M. Further, assume given
a lookup function v : (M× Var) ⇀ V, where V is the
set of values of the language under discussion, and let
var(µ) denote the set of all variables whose values is
stored in µ. (This setting is compatible with dynamic
object creation: for instance, if µ is a memory and x is
a pointer to a list, v(µ, x) returns the list represented
by this pointer rather than its actual memory address
value. In other words, we implicitly assume that all
information stored in memories can only be accessed
throughout variables.)

Our characterisations rely on the ability to separate
a memory in two disjoint pieces of memories, and to up-
date memories locally. Both operations are specified as
follows. First, if µ1, µ2 ∈ M verify var(µ1)∩var(µ2) = ∅,
then there exists µ1⊕µ2 ∈ M such that if x ∈ var(µ1)
then v(µ1⊕µ2, x) = v(µ1, x), if x ∈ var(µ2) then
v(µ1⊕µ2, x) = v(µ2, x) and undefined otherwise. No-
tice that ⊕ is commutative. Second, if µ ∈ M, x ∈ Var
and d ∈ V, then µ[x 7→ d] ∈ M is a memory s.t. for all
y ∈ Var v(µ[x 7→ d], y) = if x = y then d else v(µ, y).

Example 1. Suppose a language which only manip-
ulates integers, i.e. V = Z. Then M is the set of
all functions µ : Var → Z with var(µ) = dom(µ),
v(µ, x) = µ(x), ⊕ is the disjoint union of functions,
and µ[x 7→ d](y) = if x = y then d else µ(y).

The operational semantics of the programming lan-
guage is given by the transition system (Conf,Ã) where
Conf = Lang × M is the set of configurations and
Ã ⊆ Conf × Conf is the transition relation. We write
c Ã c′ for (c, c′) ∈Ã and c 6Ã if there is no c′ ∈ Conf
such that c Ã c′. Further, we let Ã∗ denote the re-
flexive and transitive closure of Ã. Finally, we assume
that (

√
, µ) indicates successful termination of the pro-

gram with memory µ, and hence that for all µ ∈ M,
(
√
, µ) 6Ã. In contrast, we say that a configuration (S, µ)

does not terminate, denoted by (S, µ)⊥, if the execu-
tion of S on memory µ does not terminate (either be-
cause of an infinite execution or an abnormal stop as,
e.g., deadlock), i.e., ¬∃µ′ : (S, µ)Ã∗ (

√
, µ′).

Example 2. The non-deterministic language Par is de-
fined by

S :: = x := e | if [] b0 → S0 . . . [] bn → Sn fi
| S1 ; S2 | while b do S od | S1 || S2

where e is an arithmetic expression and b, b0, . . . , bn
are boolean expressions. The transition relation of Par
is defined by the following rules (we omit symmetric
rules for S1 || S2), where memories are the functions of
Example 1.

(x := e, µ)Ã (
√

, µ[x 7→ µ(e)])

(S1, µ)Ã (S ′
1, µ

′)
(S1 ; S2, µ)Ã (S ′

1 ; S2, µ
′)

(S1, µ)Ã (
√

, µ′)
(S1 ; S2, µ)Ã (S2, µ

′)

(Sj , µ)Ã (S ′
j , µ

′) µ(bj) holds
(if [] b0 → S0 . . . [] bn → Sn fi, µ)Ã (S ′

j , µ
′)

0 ≤ j ≤ n

(S, µ)Ã (S ′, µ′) µ(b) holds
(while b do S od, µ)Ã (S ′ ; while b do S od, µ′)

¬µ(b) holds
(while b do S od, µ)Ã (

√
, µ)

(S1, µ)Ã (S ′
1, µ

′)
(S1 || S2, µ)Ã (S ′

1 || S2, µ
′)

(S1, µ)Ã (
√

, µ′)
(S1 || S2, µ)Ã (S2, µ

′)

We now turn to state three basic assumptions which
force the operational semantics to enjoy some minimal
restrictions that are essential for our results to hold.
Assumptions 1 and 3 are seemingly obvious and sat-
isfied by most of the languages (if not all). Nonethe-
less we need to make them explicit to set the ground of
our general framework. Assumption 2 rules out some
behaviour where memories are objects more complex
than functions.

Assumption 1. Transitions preserve the set of vari-
ables of a program. Moreover they do not affect the values
of other variables than those appearing in the program.

Notice that this assumption is not contradictory
with object creation: a new object may be created but
it can only be (directly or indirectly) referred through
some variable in the text of the program.

Assumption 2. Apart from its syntax, the semantics of
a program depends only on the value of its own variables.
Moreover, given a memory, it is always possible to find
another one with the same values that can be separated in
two parts, one of which contains exactly all information
relevant to the program. (See Fact 1.6.)

Assumption 2 imposes some restrictions on the
memory manipulation. For example, if x is a pointer
to a list and v(µ, x) is considered to be the list rep-
resented by this pointer (rather than its actual ad-
dress value), the address value cannot affect the



control flow of a program. That is, for pointer vari-
ables x and y, if [] (x=y) → S [] (x6=y) → S ′ fi is not
a valid program.

Assumption 3. The operational semantics of the lan-
guage Lang is independent of variable names.

This assumption allows to change variable names
without altering the program behaviour.

Assumptions 1, 2, and 3 can be formalised (see Ap-
pendix A) and from them Fact 1 below follows.

Fact 1 (After assumptions).

1. If var(S) = var(µ1) and (S, µ1⊕µ2) Ã
∗ (S′, µ′)

then there exists µ′
1 such that µ′ = µ′

1⊕µ2.

2. If var(S) = var(µ1) and (S, µ1⊕µ2) Ã
∗

(S′, µ′
1⊕µ2) then (S, µ1⊕µ3) Ã

∗ (S′, µ′
1⊕µ3)

for any µ3 (with var(µ2) = var(µ3)).

3. If var(S) = var(µ1) and (S, µ1⊕µ2)⊥ then
(S, µ1⊕µ3)⊥ for any µ3 (with var(µ2) = var(µ3)).

4. If y /∈ var(S) and (S, µ) Ã
∗ (S′, µ′)

then (S[y/x], µ[x 7→ d][y 7→ v(µ, x)]) Ã
∗

(S′[y/x], µ′[x 7→ d][y 7→ v(µ′, x)]) for any value d.

5. If y /∈ var(S) and (S, µ)⊥ then (S[y/x], µ[x 7→
d][y 7→ v(µ, x)])⊥ for any value d.

6. For every memory µ there are µ1, µ2 such that
var(µ1) = var(S) and ∀x : v(µ, x) = v(µ1⊕µ2, x).

It is not difficult to verify that Par satisfies the three
assumptions above and complies to Fact 1.

3. Information Flow: Definitions

Let φ : Var → Var be a partial injective func-
tion intended to relate variables of two pro-
grams. Let dom(φ) = {x1, . . . , xn}1 and let
I ⊆ Vn × Vn be a binary relation on tuples of
values intended to determine the indistinguisha-
bility criterion. We say that memory µ is (φ, I)-
indistinguishable from µ′, denoted by µ ∼I

φ µ′, if
〈(v(µ, x1),.., v(µ, xn)), (v(µ′, φ(x1)),.., v(µ

′, φ(xn)))〉 ∈ I.

Example 3. Let L ⊆ Var be the set of low (or public)
variables of a program. Let idL : Var → Var be the iden-
tity function on L and undefined otherwise. Then ∼=

idL

is the usual indistinguishability relation used to charac-
terise non-interference. It relates memories whose pub-
lic variables agree in their values meaning that these
memories cannot be distinguished one from each other.

However, our definition of indistinguishability is
more flexible. Let H = {p} where p is a pointer to a

1 We suppose variables can always be arranged in a particular
order which we use to arrange set of variables in tuples.

list, and let avrg be the function that computes the av-
erage of a list, i.e. avrg([d1, . . . , dn]) = d1+···+dn

n
. Then

∼A
idH

cannot distinguish between memories µ and µ′

which agree on the average value of the list to which p
points, i.e. which verify avrg(v(µ, p)) = avrg(v(µ, p)).

Function φ is somehow redundant. It can always be
encoded on I. For instance, ∼=

idL
is equivalently defined

by ∼=L

id
, where id is the identity function and =L is the

set {〈(d1, .., dm, em+1, .., en), (d1, .., dm, e
′
m+1, .., e

′
n)〉 |

di, ej , e
′
j ∈ V}, provided L = {x1, .., xm}. The need of

φ will become evident in Section 4 when security is de-
fined using composition and variable renaming.

The next proposition follows from definition of ∼.

Proposition 1. For all µ1, µ2, µ
′
1, µ

′
2, µ

′′
1 , µ

′′
2 , φ, and

I, such that φ : var(µ1) → var(µ2), µ1⊕µ′
1 ∼I

φ µ2⊕µ′
2 iff

µ1⊕µ′′
1 ∼I

φ µ2⊕µ′′
2 .

We now turn to the definitions of non-interference;
unless otherwise specified, from now on we fix programs
S1 and S2, functions φ, φ′ : var(S1) → var(S2), and in-
distinguishability criteria I and I ′ which define rela-
tions ∼I

φ and ∼I′

φ′ .

S1
∼≈φ,I

φ′,I′ S2 (read “S1 is termination sensitive non-
interfering with S2”) if for any two input indistinguish-
able states, the successful execution of S1 from one of
these states, implies the successful execution of S2 from
the other state, with both executions ending in output
indistinguishable states.
S1 ≈φ,I

φ′,I′ S2 (read “S1 is termination insensitive non
interfering with program S2”) is a weaker concept in
the sense that in addition S2 is not required to termi-
nate.

Finally, a program is (TS or TI) (I, I ′)-secure if, it
is (TS or TI) non interfering with itself.

Definition 1.
1. S1

∼≈φ,I
φ′,I′ S2 if for all µ1, µ2, µ

′
1 ∈ M,

`

µ1∼I
φµ2 ∧ (S1, µ1)Ã

∗ (
√

, µ′
1)
´

⇒
∃µ′

2∈M : (S2, µ2)Ã
∗ (

√
, µ′

2) ∧ µ′
1∼I′

φ′µ′
2.

2. S1 ≈φ,I
φ′,I′ S2 if for all µ1, µ2, µ

′
1 ∈ M,

`

µ1∼I
φµ2 ∧ (S1, µ1)Ã

∗ (
√

, µ′
1)
´

⇒
`

(S2, µ2)⊥ ∨ ∃µ′
2∈M : (S2, µ2)Ã

∗ (
√

, µ′
2) ∧ µ′

1∼I′

φ′µ′
2

´

.

3. Let I, I ′ ⊆ Vn × Vn with n = # var(S).

(a) S is termination sensitive (TS) (I, I ′)-secure iff

S ∼≈id,I
id,I′ S.

(b) S is termination insensitive (TI) (I, I ′)-secure iff

S ≈id,I
id,I′ S.

Traditional non-interference is characterised in our
setting by (=L,=L)-security, whit =L as defined above.
It is not difficult to check that our definitions agree with



those already defined in the literature (e.g. [16, 42, 38,
22]).

However, our definitions are in fact more flexible
that the usual formulations of non-interference. Indeed,
the latter usually require that executions from indistin-
guishable states ends at indistinguishable states with
identical criteria of indistinguishability. In contrast, we
allow indistinguishability for initial states (input indis-
tinguishability) to differ differ from indistinguishabil-
ity for final states (output indistinguishability). More
precisely, Definition 1 identifies input indistinguisha-
bility with (φ, I)-indistinguishability and output indis-
tinguishability with (φ′, I ′)−indistinguishability.

Furthermore, the generality of our definition is use-
ful for providing a characterisation of some forms of
controlled declassification. Declassification allows to
leak some confidential information without being too
revealing. A typical example is a program S that in-
forms the average salary of the employees of a company
without revealing any other information that may give
any further indications of particular salaries (which is
confidential information). Suppose salaries are stored
in the list lsalaries and the average will be stored in al.
S should be (A,={al})-secure to ensure that no other
information of the salary than the average is revealed.
(See Example 3 for the definition of A.) A semantic
characterisation of this kind of properties has recently
been given in [36] and coined delimited release.

4. Checking Information Flow using

Composition and Renaming

Let . be an operation in Lang such that, for all
S1, S2, µ1, µ2, µ

′
1, µ

′
2, with var(S1) ∩ var(S2) = ∅,

var(S1) = var(µ1), var(S2) = var(µ2)

(a) (S1, µ1⊕µ2)Ã
∗ (

√
, µ′

1⊕µ2) iff (S1 . S2, µ1⊕µ2)Ã
∗

(S2, µ
′
1⊕µ2); and

(b) (S1, µ1⊕µ) Ã∗ (
√
, µ′

1⊕µ) and (S2, µ
′⊕µ2) Ã

∗

(
√
, µ′⊕µ′

2), for some µ and µ′, iff
(S1 . S2, µ1⊕µ2)Ã

∗ (
√
, µ′

1⊕µ′
2).

It is not difficult to check that sequential composition
and parallel composition in language Par satisfy condi-
tions of ..

Operation . is the first of the two ingredi-
ents on which our result builds up. Notice that
non-interference, as given in Definition 1, consid-
ers separately an execution of program S1 and an-
other of S2. By composing S1 . S2, properties (a)
and (b) above allows to put these executions one af-
ter the other. Therefore we can find a different char-
acterisation of security:

Definition 2. Let S1 and S2 be two programs such

that var(S1) ∩ var(S2) = ∅. S1
.≈

φ,I

φ′,I′ S2 (resp. S1
.∼

φ,I
φ′,I′

S2) if for all µ1, µ2, µ
′
1, with var(µ1) = var(µ′

1) =
var(S1) and var(µ2) = var(S2),
`

µ1⊕µ2 ∼I
φ µ1⊕µ2 ∧ (S1 . S2, µ1⊕µ2)Ã

∗ (S2, µ
′
1⊕µ2)

´

⇒
∃µ′

2 : var(µ′
2) = var(S2) :

(S2, µ
′
1⊕µ2)Ã

∗ (
√

, µ′
1⊕µ′

2) ∧ µ′
1⊕µ′

2 ∼I′

φ′ µ′
1⊕µ′

2

(∨ (S2, µ
′
1⊕µ2)⊥ for the TI case).

Notice that this definition has the same shape as
Definition 1. However, while S1

∼≈φ,I
φ′,I′ S2 considers

executions of two different programs (S1 and S2),

S1
.≈

φ,I

φ′,I′ S2 considers the execution of only one pro-
gram (S1 . S2): first, the execution until the middle
(that is, until S2) and then the execution until the end.

The next theorem claims that Definitions 1 and 2
are equivalent. That is, non-interference of two pro-
grams can be seen as non-interference of one program
(namely, the composition of those two programs). The
proof can be found in Appendix B.

Theorem 1. LetS1 andS2 such that var(S1)∩var(S2) =
∅. Then

(a) S1
∼≈φ,I

φ′,I′ S2 if and only if S1
.≈

φ,I

φ′,I′ S2, and

(b) S1 ≈φ,I
φ′,I′ S2 if and only if S1

.∼
φ,I
φ′,I′ S2.

Programs sharing variable names fall out of Defini-
tion 2 (and Theorem 1). Using variable renaming —
the second ingredient— conflicting variables can be re-
named to fresh names and hence the definition can be
adapted to a more general setting. For this, we need to
ensure that the behaviour of the renamed program is
the same (which is guaranteed by Assumption 3), and
that non-interference is preserved by renaming, which
is stated in the following theorem.

Theorem 2. Let ξ : var(S2) → V be a bijective function
on a set of variables V . Then

(a) S1
∼≈φ,I

φ′,I′ S2 iff S1
∼≈ξ◦φ,I

ξ◦φ′,I′ S2[ξ], and

(b) S1 ≈φ,I
φ′,I′ S2 iff S1 ≈ξ◦φ,I

ξ◦φ′,I′ S2[ξ].
where S2[ξ] is program S2 whose variables has been re-
named according to function ξ.

Putting together Theorems 1 and 2 we have the fol-
lowing corollary:

Corollary 1. Let var(S)′ = {x′| x ∈ var(S)} such that
var(S) ∩ var(S)′ = ∅. Let ξ : var(S) → var(S)′ such that
ξ(x) = x′ for all x ∈ var(S). Then, the following state-
ments are equivalent

1. S is TS (resp. TI) (I1, I2)-secure.

2. S ∼≈ξ,I1

ξ,I2
S[ξ] (resp. S ≈ξ,I1

ξ,I2
S[ξ])

3. S .≈
ξ,I1

ξ,I2
S[ξ] (resp. S .∼

ξ,I1

ξ,I2
S[ξ])



Corollary 1 allows to analyze whether a program S
is secure in a single execution of the program S .S[ξ].
But this is what verification logic are used to. After re-
visiting Definition 2 in a deterministic setting, we char-
acterise (I1, I2)-security in some such logics.

5. Deterministic Programs

Simpler definitions for non interference can be ob-
tained if the program S under study is deterministic as
stated by the following theorem.

Theorem 3. Let S .S[ξ] be a deterministic program
(and hence also is S), and let ξ as in Corollary 1.
1. S is TS (I1, I2)-secure if and only if

∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2

⇒ (S, µ1⊕µ2)⊥ ∨
∃µ′

1, µ
′
2 : var(µ′

1) = var(S) ∧ var(µ′
2) = var(S)′ :

(S . S[ξ], µ1⊕µ2)Ã
∗ (

√
, µ′

1⊕µ′
2) ∧ µ′

1⊕µ′
2 ∼I2

ξ µ′
1⊕µ′

2

2. S is TI (I1, I2)-secure if and only if

∀µ1, µ2, µ
′
1, µ

′
2 :

var(µ1) = var(µ′
1) = var(S) ∧ var(µ2) = var(µ′

2) = var(S)′ :
`

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S . S[ξ], µ1⊕µ2)Ã
∗ (

√
, µ′

1⊕µ′
2)
´

⇒ µ′
1⊕µ′

2 ∼I2

ξ µ′
1⊕µ′

2

The simplicity of definitions in Theorem 3 w.r.t. Def-
inition 2 lies in the fact that we do not need to make
reference to intermediate points in the program. This
allows to check security by simply analysing the I/O
behaviour of program S;S[ξ].

The theorem can be further enhanced for languages
featuring simple functional memories like the one de-
fined in Example 1. Notice that Theorem 3 requires
that memory should be “separable” by operation ⊕.
Functions can always be separated. Consequently, we
have the following corollary:

Corollary 2. Let S .S[ξ] be a deterministic program
with memory as defined in Example 1. Let ξ as in Corol-
lary 1.
1. S is TS (I1, I2)-secure if and only if

∀µ : µ ∼I1

ξ µ ⇒
`

(S, µ)⊥ ∨ ∃µ′ : (S . S[ξ], µ)Ã∗ (
√

, µ′) ∧ µ′ ∼I2

ξ µ′
´

2. S is TI (I1, I2)-secure if and only if

∀µ, µ′ :
`

µ ∼I1

ξ µ ∧ (S . S[ξ], µ)Ã∗ (
√

, µ′)
´

⇒ µ′ ∼I2

ξ µ′

6. Hoare logic

Let While be the subset of Par not containing par-
allel composition and limiting the if construction to
be binary and deterministic: if b then S1 else S2 fi =

if [] b→ S1 [] ¬b→ S2 fi. Recall that memories are the
functions of Example 1.

Let P and Q be first order predicate and S a While
program. Recall that a Hoare triple [19] {P}S {Q}
means that whenever S starts to execute in a state in
which P holds, if it terminates, it does so in a state sat-
isfying Q. An assertion {P}S {Q} holds if it is prov-
able with the following rules:

{P [e/x]}x := e {P} P ′ → P {P}S {Q} Q → Q′

{P ′}S {Q′}
{P ∧ b}S1 {Q} {P ∧ ¬b}S2 {Q}

{P} if b then S1 else S2 fi {Q}
{P}S1 {R} {R}S2 {Q}

{P}S1 ; S2 {Q}
{P ∧ b}S {P}

{P}while b do S od {P ∧ ¬b}
Hoare logic is sound and (relatively) complete w.r.t.

operational semantics [10]. That is, for all program S
and predicates P and Q, {P}S {Q} is provable iff for
all µ, µ′, µ |= P and (S, µ) Ã∗ (

√
, µ′) imply µ′ |= Q.

µ |= P means that P holds whenever every program
variable x appearing in P is replaced by the value
v(µ, x).

Suppose I(I) is a predicate such that

µ |= I(I) iff µ ∼I
ξ µ

(

iff (v(µ, ~x), v(µ, ~x′)) ∈ I
)

.

where v(µ, (x1, .., xn)) = (v(µ, x1), .., v(µ, xn)) and
var(S) = {x1, .., xn}. We expect that I(I) is de-
finable in the specification logic embedded in the
Hoare logic. For instance, predicate I(=L) for rela-
tion ∼=L

ξ (which is the renaming version of ∼=
idL

in
Example 3), can be defined by

∧

x∈L x = x′.
Termination insensitive (I1, I2)-security can be

characterised in Hoare logic as follows: S is TI
(I1, I2)-secure iff {I(I1)}S ; S[ξ] {I(I2)} is prov-
able. This is shown in the following:

S is TI (I1, I2)-secure
iff {Corollary 2.2}
∀µ, µ′ :

`

µ ∼I1

ξ µ ∧ (S ; S[ξ], µ)Ã∗ (
√

, µ′)
´

⇒ µ′ ∼I2

ξ µ′

iff {Def. of I}
∀µ, µ′ :
`

µ |= I(I1) ∧ (S ; S[ξ], µ)Ã∗ (
√

, µ′)
´

⇒ µ′ |= I(I2)
iff {Soundness and completeness, provided I is definable}
{I(I1)}S ; S[ξ] {I(I2)} is provable

Example 4. Let xl and yh be respectively a pub-
lic and a confidential variable in the program
xl := xl + yh ; xl := xl − yh. We show that it is non-
interfering. Indistinguishability in this case is charac-
terised by predicate I(={xl}) ≡ (xl = x′l). The proof is
given in the left side of Figure 1.

Another example —the PIN access control— deals
with declassification. In the program

if (in = pin) then acc := true else acc := false fi



{xl = x′
l}

{xl + yh − yh = x′
l}

xl := xl + yh ;
{xl − yh = x′

l}
xl := xl − yh ;
{xl = x′

l}
{xl = x′

l + y′
h − y′

h}
x′

l := x′
l + y′

h ;
{xl = x′

l − y′
h}

x′
l := x′

l − y′
h

{xl = x′
l}

{(in = pin) ↔ (in ′ = pin ′)}
if (in = pin) then
{in ′ = pin ′}
acc := true

else
{in ′ 6= pin ′}
acc := false

fi ;
{(in ′ = pin ′) ↔ (acc = true)}
if (in ′ = pin ′) then acc′ := true

else acc′ := false fi
{acc = acc′}

Figure 1. Security proof in Hoare logic

variable pin, which stores the actual PIN number, is
supposed to be confidential, whereas in, containing the
attempted number, is a public input variable and acc,
conceding or not the access to the system, is a pub-
lic output variable. The declassified information only
should reveal whether the input number (in) agrees
with the PIN number (pin) or not, and such infor-
mation is revealed by granting the access or not (in-
dicated in acc). We, therefore, require that the pro-
gram is (I,={acc})-secure, where I is such that ∼I

id

iff (µ(in) = µ(pin)) ⇔ (µ′(in) = µ′(pin)). Hence,
I(I) ≡ ((in = pin) ↔ (in ′ = pin ′)) and I(={acc}) ≡
(acc = acc′). The proof is suggested in the right side
of Figure 1.

7. Separation Logic

Separation logic is an extension of Hoare logic to
reason about shared mutable data structures [31, 20].
Whilep extends the While language with the following
commands:

S :: = x := e.i | x.i := e | x := cons(e1, e2) | · · · (1)

where i ∈ {1, 2} and e is a pure expression (not con-
taining a dot or cons). x := cons(e1, e2) creates a cell
in the heap where the tuple (e1, e2) is stored, and al-
lows x to point to that cell. e.i returns the value of the
ith position of the tuple pointed by e. (Binary tuples
suffice for our purposes although arbitrary n-tuples ap-
pear in the literature and can also be considered here.)
Then, x := e.i and x.i := e allow to read and update
the heap respectively. Values in Whilep may be inte-
gers or locations (including nil).

A memory contains two components: a store, map-
ping variables into values, and a heap, mapping loca-
tions (or addresses) into values. Thus, if V = Z ∪ Loc,
S = Var → V is the set of stores and H = Loc−{nil} →

(V×V) is the set of heaps. Hence M = S×H. As a con-
sequence variables can have type Z or type Loc.

Separation logic requires additional predicates to
manipulate pointers. In addition to formulas of the
classical predicate calculus, the logic has the follow-
ing forms of assertions: e 7→ (e1, e2) that holds in a sin-
gleton heap with location satisfying e and the cell val-
ues satisfying e1 and e2 respectively; empty that holds
if the heap is empty; and P ∗Q, named separating con-
junction, holds if the heap can be split in two parts,
one satisfying P and the other Q. There exists a calcu-
lus for these operations including the separating impli-
cation P −∗Q, see [20, 31]. The meaning of an assertion
depends upon both the store and the heap:

(s, h) |= empty iff dom(h) = ∅
(s, h) |= e 7→ (e1, e2) iff dom(h) = {s(e)} and

h(s(e)) = (s(e1), s(e2))

(s, h) |= P ∗ Q iff ∃h0, h1 : h0⊕h1 = h,
(s, h0) |= P , and (s, h1) |= Q

Separation logic extends Hoare logic with rules to
handle pointers. The so-called frame rule, that allows
to extend local specification, is given by

{P}S {Q}
{P ∗ R}S {Q ∗ R}

where no variable occurring free in R is modified by S.
The (local version) rules for heap manipulation com-
mands are the following (we omit symmetric rules):

Let e 7→ ( , e2) abbreviates “∃e′ : e 7→ (e′, e2) and e′ is not
free in e”, then

{e 7→ ( , e2)} e.i := e1 {e 7→ (e1, e2)}

If x does not occur in e1 or in e2 then

{empty}x := cons(e1, e2) {x 7→ (e1, e2)}

If x, x′ and x′′ are different and x does not occur in e, then

˘

x=x′ ∧ (e 7→ (x′′, e2))
¯

x := e.1
˘

x=x′′ ∧ (e 7→ (x′′, e2))
¯

Using separation logic we can define inductive pred-
icates to make reference to structures in the heap
(see [31, 20]). For simplicity we only consider predi-
cate list which is defined by:

list.[ ].p = (p = nil)

list.(x:xs).p = (∃r : (p 7→ (x, r)) ∗ list.xs.r)

As we mentioned, a memory is a tuple containing a
store and a heap. We need to define var, v, and ⊕ in
this domain. Therefore, for all s, s1, s2 ∈ S, h, h1, h2 ∈
H, and x ∈ Var, we define var(s, h) = dom(s),

v((s, h), x) =

{

s(x) if s(x) ∈ Z

v(h, s(x)) if s(x) ∈ Loc



where v(h, l) returns the list pointed by l, i.e., v(h, l) =
if l=nil then [ ] else fst(h(l)):v(h−{(l, h(l))}, snd(h(l)));
and

(s1, h1)⊕(s2, h2) = (s1⊕s2, h1⊕h2)

defined only if reach(ran(si)∩Loc−{nil}, hi) ⊆ dom(hi)
for all i = 1, 2, where reach(loc, h) =

⋃

n≥0 h
n(loc) −

{nil} is the set of locations reachable form the set
loc. If this restriction does not hold, then, for x ∈
var(s1, h1), v((s1⊕s2, h1⊕h2), x) may be defined when
v((s1, h1), x) is not (hence not satisfying the require-
ment of ⊕ in Section 2).

Notice that (s, h) |= list.xs.x iff v(h, s(x)) = xs iff
v((s, h), x) = xs.

Let {x1, .., xn} = var(S) ∩ Loc and {y1, .., ym} =
var(S) − Loc. Let ~x = (x1, .., xn) and ~x′ = (x′1, .., x

′
n)

and similarly for ~y and ~y′. Denote ~xs = (xs1, .., xs1)
and ~xs′ = (xs′1, .., xs

′
n). Fix this notation for the rest

of this section. Let Isl(I) be predicate

∃ ~xs, ~xs′ :
“ “

V

1≤i≤n
list.xsi.xi

”

∗
“

V

1≤i≤n
list.xs′i.x

′
i

” ”

∧ Iv( ~xs, ~xs′, I)

where we suppose the existence of Iv such that

µ |= Iv( ~ds, ~ds′, I) iff (〈v(µ, ~y), ~ds〉, 〈v(µ, ~y′), ~ds′〉) ∈ I

where v(µ, ~y) is defined as in Section 6,

and ~ds and ~ds′ are actual list values. (No-
tice that µ |= Iv(v(µ, ~x), v(µ, ~x′), I) iff
(〈v(µ, ~y), v(µ, ~x)〉, 〈v(µ, ~y′), v(µ, ~x′)〉) ∈ I iff µ∼I

ξ µ.)
Isl(I) has two parts: the first part states the sepa-

ration of the heap, the second one, the indistinguisha-
bility of the values.

Separation logic is (relatively) complete for the sub-
language we are using [20] (recall that it restricts to
use the dot and cons only in the specific assignments in
(1)). As a consequence, security in separation logic can
be completely characterised as follows: S is TI (I1, I2)-
secure iff {Isl(I1)}S ; S[ξ] {Isl(I2)} is provable. This
can be proven like for Hoare logic using Theorem 3 in-
stead of Corollary 2, and the characterisation of Isl(I)
above. The details are reported in Appendix C.

Example 5. The following program receives a list
lsalaries with employees salaries and returns in al the
average of the salaries.

p := lsalaries ; s := 0 ; n := 0 ;
while p 6= nil do

n := n + 1 ; saux := p.salary ; s := s + saux ;
paux := p.next ; p := paux ;

od
al := s/n

Variables saux and paux are specially included to meet
the syntax restrictions imposed to the language. Call
this program AV SAL (for “AVerage SALary”).

The security requirement have been discussed at the
end of Section 3: we would like it to be (A,={al})-
secure. Thus, precondition Isl(A) and postcondition
Isl(={al}) are respectively the following predicates:

∃ps, ps′ : list.ps.lsalaries ∗ list.ps′.lsalaries′ ∧
P

ps

|ps|
=

P

ps′

|ps′|

∃ps, ps′ : list.ps.lsalaries ∗ list.ps′.lsalaries′ ∧ al = a′
l

Here, we use notation |ps| for the length of list ps, and
∑

ps for the sum of all numbers in ps with
∑

[ ] = 0.

The proof of {Isl(A)}AV SAL ; AV SAL[ξ]
{

Isl(={al})
}

should not be too difficult to work out knowing that
the loop invariant in AV SAL is

∃ps, ps′ : list.ps′.lsalaries′

∗ ( list.ps.lsalaries
∧ ∃psmis, psprev : (ps = psprev ++ psmis) ∧ list.psmis.p

∧ (s =
P

psprev) ∧ (n = |psprev|) )

∧
`

P

ps

|ps|
=

P

ps′

|ps′|

´

A similar invariant corresponds to the loop in
AV SAL[ξ] where program variables are now primed

(i.e. renamed by ξ) and
P

ps

|ps| must be changed by al.

The following predicate correspond to the “interme-
diate” assertion, i.e. the precondition of AV SAL and
postcondition of AV SAL[ξ]:

∃ps, ps′ : list.ps.lsalaries ∗ list.ps′.lsalaries′ ∧
`

al =
P

ps′

|ps′|

´

Notice that the language for mutable data struc-
ture we use does not allow to manipulate pointer arith-
metics nor to test on pointer values. In fact, the charac-
terisation of security in separation logic as given above,
only observes the values that pointers represent, not
their actual address values. This is similar to Banerjee
and Naumann’s approach to non-interference in an ob-
ject based setting [3]. If tests on pointers are allowed,
this approach would let leak information throughout
address values. An example of such leakage is program
if yh = 0 then pl := ql else pl := cons(ql.1, ql.2) fi with
yh being the only private variable. At the end of the
program, pl and ql agree on the value they represent, al-
though if yh = 0 they point to the same address, other-
wise they do not. We do not discard however a stronger
characterisation of security that control (some) leakage
through addresses.

8. Nondeterminism and CTL

Computation Tree Logic (CTL for short) [9] is a
temporal logic that extends propositional logic with
modalities to express properties on the branching struc-
ture of a nondeterministic execution. That is, CTL
temporal operators allow to quantify over execution



paths (i.e., maximal transition sequences leaving a par-
ticular state). Apart from the usual propositional oper-
ations (atomic propositions, ¬, ∨, ∧, →,. . . ), CTL pro-
vides (unary) temporal operators EF, AF, EG, and AG.
Formula EFφ states that exists an execution path that
leads to a future state in which φ holds, while AFφ
states that all execution paths lead to a future state in
which φ holds. Dually, EGφ states that exists an execu-
tion path in which φ globally holds (i.e., it holds in ev-
ery state along this execution), and AGφ says that for
all paths φ holds globally. CTL includes other (more
expressive) operators which we omit in this discussion.

Formally, a transition system (Conf,Ã) is extended
with a function Prop that to each configuration in Conf
assigns a set of atomic propositions. Prop(c) is the set
of all atomic propositions valid in c. An execution is a
maximal (finite or infinite) sequence of configurations
ρ = c0c1c2 . . . such that ci Ã ci+1 and if it ends in a
configuration cn then cn 6Ã. For i ≥ 0, let ρi = ci be
the i-th state in ρ (if ρ is finite, i+ 1 must not exceed
ρ’s length).

Let c |= φ denote that CTL formula φ holds in con-
figuration c. The semantics of CTL is defined by

c |= EFφ iff ∃ρ : ρ0 = c : ∃i : ρi |= φ

c |= AFφ iff ∀ρ : ρ0 = c : ∃i : ρi |= φ

AG and EG are the dual of EF and AF respectively,
that is, AGφ ≡ ¬EF¬φ and EGφ ≡ ¬AF¬φ. For an
atomic proposition p, c |= p iff p ∈ Prop(c). The se-
mantics of the propositional operators ¬, ∧, ∨, → are
as usual (e.g., c |= φ ∧ ψ iff c |= φ and c |= ψ).

Let end be the atomic proposition that indicates
that the execution reaches a successfully terminating
state, i.e., end ∈ Prop(S, µ) iff S =

√
. Let mid indi-

cate that program S[ξ] is about to be executed, i.e.,
mid ∈ Prop(S′, µ) iff S′ = S[ξ]. Let Ind[I] be an atomic
proposition indicating indistinguishability in a state.
Thus Ind[I] ∈ Prop(S, µ) iff µ ∼I

ξ µ. We let S |= Φ de-
notes ∀µ : (S, µ) |= Φ. For the sake of simplicity, we
consider simple memories as in Example 1. (More com-
plex states are possible, but it will be necessary to in-
troduce additional atomic propositions to characterise
separable memories like we did in the Section 7.)

In the following we give characterisations of non-
interference in CTL. A program S is TS (I1, I2)-secure
if and only if S .S[ξ] satisfies Ind[I1] → AG(mid →
EF(end ∧ Ind[I2])), which says that “whenever the ini-
tial state is indistinguishable, every time S[ξ] is reached
(and hence S terminates) then there is an execution
that leads to a terminating indistinguishable state”.

For the termination insensitive case, first notice that
a program does not terminate if no execution reaches
a terminating state. That is, ¬∃µ′ : (S, µ) Ã∗ (

√
, µ′),

(a)
(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0) end

mid

(0, 1)

(0, 1) (0, 1)

(0, 0)

mid

(1, 0)

(0, 0)

(1, 1)

(0, 1)

(b)

(0, 0)

(0, 1)

(0, 1)

(0, 1) end

mid

(1, 1)

(1, 1)

(1, 1) end

mid

(0, 0)

(0, 0)

(0, 0)

(0, 0)

(0, 0) end

mid

(1, 0)

(1, 0)

(1, 0) (1, 0) end

mid

Figure 2. Automata for programs of Example 6

or equivalently ∀S′, µ′ : (S, µ) Ã∗ (S′, µ′) : S′ 6= √
,

and hence (S, µ) |= AG¬end. Now, program S is TI
(I1, I2)-secure if and only if S .S[ξ] satisfies Ind[I1] →
AG(mid → ((AG¬end)∨EF(end∧ Ind[I2]))), that is, “if
the initial state is indistinguishable then, every time
S[ξ] is reached, the program does not terminate or
there is an execution that leads to a terminating in-
distinguishable state”. The CTL characterisations of
security can be proven correct using Corollary 1 (see
Appendix D).

Example 6. Let yh be a confidential variable in the
following programs (borrowed from [22]):

(a)
if [] yh=0 →

yh := yh

[] true →
while true do yh := 0 od

fi

(b)
if [] yh=0 →

while true do yh := 0 od
[] true →

yh := yh

fi

We check whether they are (possibilistic) non-
interfering [38, 22], that is, whether they are (=L,=L)-
secure. We use CTL and for this we set Ind[=∅] ≡ true.
The automata of the (self-composed) programs (a)
and (b) are depicted in Figure 2. In the picture, vari-
ables take only value 0 or 1. Besides, a state is
depicted with a tuple (d, d′) containing the val-
ues of yh and y′h respectively. Labels mid and end next
to a state indicate that they hold in this state. Ini-
tial states are indicated with a small incoming ar-
row.

Observe that both programs satisfy the TI formula
true → AG(mid → ((AG¬end)∨EF(end∧true))). As ob-
served in [22], program (a) does leak information: if it
terminates, it does it with yh = 0. The TS formula
true → AG(mid → EF(true ∧ end)) detects such leak-
age. Notice that the second automaton from the left
has an execution that completes its “first phase” but
never terminates. The formula is valid in program (b).



LTL and possibilistic security. A similar characterisa-
tion can be given for LTL [24] but limited to determin-
istic programs. Like CTL, LTL extends propositional
logic with modal operations. However this modalities
refer only to properties of single executions disregard-
ing quantification. LTL provides (unary) temporal op-
erators F and G. Fφ holds in a program execution if
φ holds in the future, i.e. in some suffix of this execu-
tion. Gφ holds in a program execution if φ holds glob-
ally, i.e. in all suffixes of this execution.

In a deterministic setting, the semantics of F and G
can be characterised in terms of reachability: c |= Fφ
iff (∃c′ : cÃ∗ c′ : c′ |= φ), and c |= Gφ iff (∀c′ : cÃ∗ c′ :
c′ |= φ). Using Corollary 2, TS and TI (I1, I2)-security
can be characterised in LTL respectively by formulas
Ind[I1] → ((F mid) → F(end ∧ Ind[I2])), and Ind[I1] →
G(end → Ind[I2]).

It is known that CTL and LTL are incomparable
on expressiveness. AG(φ→ EFψ) is a typical CTL for-
mula which is not expressible in LTL. It can be shown
that AG(φ→ (AGψ∨EFψ)) is neither. These formulas
occur as nontrivial subformulas of the CTL character-
isations of security. As a consequence, security cannot
be characterised with LTL in a non-deterministic set-
ting (at least using our technique).

More generally, our encoding of possibilistic secu-
rity is limited to logics that can observe branching
structure of executions such as CTL, CTL∗, or the
modal µ-calculus, ruling out other logics usually used
on concurrent systems which can only observe linear
behaviour (this includes not only LTL but also Owicki-
Gries logic).

Termination and possibilistic security. Example 6 an-
ticipates certain subtleties arising from termination. It
has been argued that program (b) still leaks informa-
tion [22]. A sharp adversary that can observe possi-
bilistic non-termination may detect that a possible ex-
ecution of the same instance of a program (i.e. run-
ning with the same starting memory) stalls indefinitely.
Such adversary can observe a difference between pro-
gram (b) under yh = 0 (which sometimes terminates
and some others does not) or under yh = 1 (which al-
ways terminates). To this extend, our characterisation
of TS (I1, I2)-security fails.

So far, we have considered strict non-termination:
(S, µ)⊥ states that S does not terminate in µ. A no-
tion of possibilistic termination can be given, denoted
by (S, µ)↗, that states that there is an execution of S
from memory µ that does not terminate. I.e., (S, µ)↗
iff there exists ρ such that (S, µ)=ρ0 and ∀i : i ≥ 0 :
¬∃µ′ : ρi=(

√
, µ′).

From Definition 1, S is (TS) (I1, I2)-secure if for all

µ1, µ2 such that µ1 ∼I1

idV1

µ2,

(o) ∀µ′
1 : (S, µ1)Ã

∗ (
√

, µ′
1)

⇒ (∃µ′
2 : (S, µ2)Ã

∗ (
√

, µ′
2) ∧ µ′

1 ∼I2

idV2

µ′
2.

In addition to this, one of the following termination
conditions can be also required:

(i) (S, µ1)⊥ ⇒ (S, µ2)⊥ (ii) (S, µ1)↗ ⇒ (S, µ2)⊥
(iii) (S, µ1)⊥ ⇒ (S, µ2)↗ (iv) (S, µ1)↗ ⇒ (S, µ2)↗

Since ¬(S, µ)⊥ iff ∃µ′ : (S, µ) Ã∗ (
√
, µ′), and pro-

vided that I1 is symmetric, (i) can be deduced from
(o). Since (o) implies (i), and (S, µ)⊥ implies (S, µ)↗,
then (ii) is redundant as well.

Condition (iii) states that if a program may not ter-
minate then it must not terminate in any indistinguish-
able state. As a consequence it considers insecure any
program that sometimes terminates and some other
does not. In particular, program (b) in Example 6 is
insecure under this condition. But so is

if [] true → while true do h := h od [] true → h := h fi (2)

which evidently does not reveal any information.

Condition (iv) states that a program that may not
terminate in a given state, should be able to reach
a non-termination situation in any indistinguishable
state. Provided that I1 is symmetric, this also means
that a secure program that surely terminates in a state,
surely terminates in any indistinguishable state. This
definition rules out Example 6(b) as insecure, but con-
siders (2) to be secure.

The following CTL formulas characterise these re-
strictions:

(iii) Ind[I1] →
`

(EG¬mid) → AG¬end
´

(iv) Ind[I1] →
`

(EG¬mid) → AG(mid → EG¬end)
´

(ivs) Ind[I1] →
`

(AF mid) → AF end
´

where (ivs) is the restriction of (iv) to the case in which
I1 is symmetric. Notice that (iii) is not satisfied in
any automaton of Figure 2(b), (iv) is not satisfied by
the second automaton from the left, and (ivs), by the
third.

9. Discussion

9.1. Benefits of completeness. While our charac-
terization of non-interference with Hoare logics is sound
and complete, it is undecidable in general and not obvi-
ously compositional. This is to be contrasted with type
systems for non-interference, as type inference is usu-
ally decidable and the typing rules is compositional.

Completeness of the Hoare logic allows us to achieve
the best of the two worlds. Indeed, consider the sim-
ple imperative language of the introduction and let P



be a program with low variables ~x and with high vari-
ables ~y, and let [~x′, ~y′/~x, ~y] be a renaming of the pro-
gram variables of P with fresh variables; it follows im-
mediately from the soundness of the type system of [42]
and from our characterization of non-interference that
the following rule is valid:

~y : high, ~x : low ` P : τ cmd

{~x = ~x′} P ; (P [~x′, ~y′/~x, ~y]) {~x = ~x′}

Likewise, one can show the validity of rules such as:

{~x = ~x′} P ;P [~x′, ~y′/~x, ~y] {~x = ~x′}
{~x = ~x′} Q;Q[~x′, ~y′/~x, ~y] {~x = ~x′}

{~x = ~x′} (P ;Q); (P ;Q)[~x′, ~y′/~x, ~y] {~x = ~x′}

Such rules are most useful in order to automate or
shorten proofs of non-interference for programs.

9.2. Model Checking. Results of Section 8 allow to
directly use model checker tools such as SPIN [40] or
SMV [39] for checking (I1, I2)-security. However, this
is limited to programs with finite state spaces.

To model check infinite state space systems, we will
need either to use the assistance of proof checkers, or
to resort to abstractions. (I1, I2)-security already sug-
gests some abstraction in predicates I1 and I2. De-
pending on the granularity defined by these predicates,
abstractions may be complete, or further abstraction
may be necessary resulting, in any case, in safe approx-
imations. Since (I1, I2)-security is a particular kind of
CTL or LTL property, we hope that model checking
can be specifically tailored to it.

9.3. Other forms of non-interference. One natu-
ral direction for further research is to provide similar
characterizations for other notions of non-interference.
In particular, we intend to study further the appropri-
ateness of our approach for capturing declassification.

Further, we intend to extend our results to account
for covert channels. In particular, we expect that our
characterizations may be adapted to probabilistic non-
interference, a refined notion of non-interference that
is adopted in many works on non-deterministic lan-
guages, see e.g. [37, 38], and that eliminates proba-
bilistic covert channels by considering the distribution
of the inputs and outputs. It will also be interesting
to assess the applicability of probabilistic Hoare log-
ics [12] and probabilistic model-checking [4] in this con-
text. Likewise, we hope that our characterizations may
be adapted to account for timing leaks, using appro-
priate logics for timed systems [18].

9.4. Extension to Java. Another natural direction
for further research is to extend the results of this pa-
per to other language constructs such as exceptions

and objects. We are particularly interested in apply-
ing our method to Java applets, in particular since se-
curity policies for JavaCard applets often require some
form of non-interference [26], and type-based systems
such as the ones of [3] seem too restrictive for accept-
ing JavaCard applets as secure (of course, one could
resort to JFlow [27] but we are not aware of any non-
interference result for this type system).

The extension of our work to Java raises sub-
tle issues, in particular with respect to definability
of heap indistinguishability [3] that involves a par-
tial bijection between addresses, and with exceptions
that poses problems similar to termination-sensitive
non-interference. However, we hope that it is possi-
ble to give an appropriate characterization of non-
interference in the Java Modeling Language JML [23],
and use existing verification tools such as Jack [7] or
Bogor [32] (see [6] for an overview of JML tools) to val-
idate non-interference.

9.5. Related work. A large body of recent works on
non-interference follows a type-based approach, see [35]
for a recent survey. There are however, notable ex-
ceptions to this trend. In particular, many characteri-
zations of non-interference, often amenable to model-
checking techniques, have been developed in the con-
text of process algebras, see e.g. [2, 13, 34]. In fact [14]
reports on a model checker for SPA [13], though the ap-
proach is based on bisimulation checking rather than
verification of temporal properties.

Closest to our concerns is the work of Joshi
and Leino [22], who provide a characterization of
non-interference using weakest precondition cal-
culi. Like ours, their characterization can be applied
to a variety of programming constructs, includ-
ing non-deterministic constructs, and can handle ter-
mination sensitive non-interference. Their use of cylin-
ders eliminates the need to resort to self-composition;
on the other hand, their approach is circumscribed to
weakest precondition calculi.

Pursuing the line of work initiated by Joshi and
Leino, Darvas, Hähnle and Sands [11] rely on dy-
namic logic to provide criteria for non-interference (TS
and TI, and modulo declassification) in the context of
JavaCard. While they suggest to use self-composition
as a means to guarantee non-interference, they do not
show that their criterion is sound and complete, nor do
they highlight the benefits of completeness. More re-
cently, Jacobs and Warnier [21] provide a method to
verify non-interference for (sequential) Java programs.
Their method relies on a relational Hoare logic for JML
programs, and is applied to an example involving log-
ging in a cash register. However there lacks a precise
analysis of the form of non-interference enforced by



their method. None of [11, 21] handle non-determinism.
Generalisations of non-interference were given else-

where [33, 25, 15, 36]. In particular, [15] has recently
provided a definition of secrecy much like ours (I, I ′)-
security. However, they focus on abstract interpreta-
tion for the anaysis of the property.

Acknowledgments: We thank the anonymous review-
ers for providing valuable comments.
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A. Formalization of the Assumptions

Assumption 1. Transitions preserve the set of vari-
ables of a program. Moreover they do not affect the val-
ues of other variables than those appearing in the pro-
gram: For all S, S′, µ1, µ2, and µ′, if var(S) = var(µ1)
and (S, µ1⊕µ2) Ã (S′, µ′), then var(S) ⊇ var(S′) and
∃µ′

1 : µ′ = µ′
1⊕µ2. ¤

A relation R ⊆ (Conf × Conf) is a bisimulation if it
is symmetric and for all 〈(S1, µ1), (S2, µ2)〉 ∈ R the fol-
lowing properties hold: (a) S1 = S2 ; (b) ∀x ∈ var(S1) :
v(µ1, x) = v(µ2, x) ; and (c) ∀c1 : (S1, µ1)Ã c1 ⇒ ∃c2 :
(S2, µ2)Ã c2 ∧ 〈c1, c2〉 ∈ R.

Assumption 2. Apart from its syntax, the semantics of
a program depends only on the value of its own variables.
Moreover, given a memory, it is always possible to find
another one with the same values that can be separated in
two parts, one of which contains exactly all information
relevant to the program: Relation

{〈(S, µ1), (S, µ2)〉 | ∀x ∈ var(S) : v(µ1, x) = v(µ2, x)}

is a bisimulation. Moreover for every memory µ there
are µ1, µ2 such that var(µ1) = var(S) and ∀x : v(µ, x) =
v(µ1⊕µ2, x) (and hence, 〈(S, µ), (S, µ1⊕µ2)〉 belongs to
the relation). ¤

As a consequence of Assumption 2, relation

{〈(S, µ⊕µ1), (S, µ⊕µ2)〉 | (S 6= √ ⇒ var(µ) ⊇ var(S))
∧ µ⊕µ1 and µ⊕µ2 are defined } (3)

is also a bisimulation. This property means that the be-
haviour of S is the same regardless the contents of the
piece of memory not touched by variables in var(S).
(Notice that bisimulation (3) and the one of Assump-
tion 2 coincides under memories of Example 1.)

Assumption 3. The operational semantics of the lan-
guage Lang is independent of variable names: Relation

{〈(S, µ), (S[y/x], µ[x 7→ d][y 7→ v(µ, x)])〉 | y /∈ var(S) ∧
S ∈ Lang ∪ {√} ∧ d is a value of x’s type}

is a bisimulation. ¤

B. Proof of Theorem 1

(a) Termination sensitive case.

Case (⇒). Let var(µ1) = var(µ′
1) = var(S1) and

var(µ2) = var(S2), and suppose µ1⊕µ2 ∼I
φ µ1⊕µ2

and (S1 . S2, µ1⊕µ2) Ã
∗ (S2, µ

′
1⊕µ2). By prop-

erty (a) of ., (S1, µ1⊕µ2) Ã
∗ (

√
, µ′

1⊕µ2). Since

S1
∼≈φ,I

φ′,I′ S2, there exists µ′ such that

(S2, µ1⊕µ2)Ã
∗ (

√
, µ′) and µ′

1⊕µ2 ∼I′

φ′ µ′.

But, by Fact 1.1, µ′ = µ1⊕µ′
2 for some µ′

2, and hence
µ′

1⊕µ2 ∼I′

φ′ µ1⊕µ′
2. By Fact 1.2

(S2, µ
′
1⊕µ2)Ã

∗ (
√
, µ′

1⊕µ′
2) and µ′

1⊕µ2 ∼I′

φ′ µ1⊕µ′
2.

Finally, since φ : var(S1) → var(S2) and var(Si) =
var(µi) = var(µ′

i), i ∈ {1, 2}, µ′
1⊕µ2 ∼I′

φ′ µ1⊕µ′
2 im-

plies

µ′
1⊕µ′

2 ∼I′

φ′ µ′
1⊕µ′

2

by Proposition 1, concluding this part of the proof.



Case (⇐). By Fact 1.6, there is always possible to
find equivalent separable memory. So, w.l.o.g., take
µ1⊕µ2 ∼I

φ η1⊕η2 (S1, µ1⊕µ2)Ã
∗ (

√
, µ′). By Fact 1.1,

there is µ′
1 such that µ′ = µ′

1⊕µ2. Therefore,

µ1⊕µ2 ∼I
φ η1⊕η2 and (S1, µ1⊕µ2)Ã

∗ (
√
, µ′

1⊕µ2)

By Proposition 1 and Fact 1.2,

µ1⊕η2 ∼I
φ µ1⊕η2 and (S1, µ1⊕η2)Ã∗ (

√
, µ′

1⊕η2)
By property (a) of ., (S1 . S2, µ1⊕η2)Ã∗ (S2, µ

′
1⊕η2).

Since S1
.≈

φ,I

φ′,I′ S2 is assumed to hold, this implies

(S2, µ
′
1⊕η2)Ã∗ (

√
, µ′

1⊕η′2) and µ′
1⊕η′2 ∼I′

φ′ µ′
1⊕η′2.

for some η′2. By Proposition 1 and Fact 1.2

(S2, η1⊕η2)Ã∗ (
√
, η1⊕η′2) and µ′

1⊕µ2 ∼I′

φ′ η1⊕η′2.
which concludes the termination sensitive case.

(b) Termination insensitive case.

Case (⇒). Let var(µ1) = var(µ′
1) = var(S1) and

var(µ2) = var(S2), and suppose µ1⊕µ2 ∼I
φ µ1⊕µ2

and (S1 . S2, µ1⊕µ2) Ã
∗ (S2, µ

′
1⊕µ2). By Prop-

erty (a) of ., (S1, µ1⊕µ2)Ã
∗ (

√
, µ′

1⊕µ2). Since we as-
sume 1 holds, either (i) (S2, µ1⊕µ2) Ã

∗ (
√
, µ′) and

µ′
1⊕µ2 ∼I

φ µ
′, for some µ′, or (ii) (S2, µ1⊕µ2)⊥.

Case (i) follows like for case (a). So suppose case (ii)
holds. But then (S2, µ

′
1⊕µ2)⊥ by Fact 1.3.

Case (⇐). Like for case (a), using Fact 1.1 and
6, suppose w.l.o.g. that µ1⊕η2 ∼I

φ µ1⊕η2 and
(S1 . S2, µ1⊕η2) Ã∗ (S2, µ

′
1⊕η2) with µ1, µ2, η1,

and η2 as before. Since S1
.≈

φ,I

φ′,I′ S2 is assumed
to hold, either (i) (S2, µ

′
1⊕η2) Ã∗ (

√
, µ′

1⊕η′2) and
µ′

1⊕η′2 ∼I
φ µ

′
1⊕η′2, for some η′2 or (ii) (S2, µ

′
1⊕η2)⊥.

Case (i) follows as in case (⇐) of (a). So suppose
case (ii) holds. But then (S2, η1⊕η2)⊥ by Fact 1.3,
which concludes the proof.

C. Characterisation of security in Separa-
tion Logic: Proofs

We prove first that Isl(I) characterises indistin-
guishability in a separable memory, i.e., a memory µ
such that ∃µ1, µ2 : µ = µ1⊕µ2 with var(µ1) = var(S)
and var(µ2) = var(S)′. First, notice that v(h, l) is
defined and l 6= nil iff reach({l}, h) ⊆ dom(h). Let
v(h1, s(~x)) = (v(h1, s(x1)), .., v(h1, s(xn))) and simi-
larly for v(h2, s(~x

′)). As a consequence, if dom(s) =
var(S) ∪ var(S)′,

∃h1, h2 : h = h1⊕h2 : v(h1, s(~x)) and v(h2, s(~x
′)) are defined

iff {s is a function with dom(s) = var(S) ∪ var(S)′}
∃s1, s2, h1, h2 : h = h1⊕h2 ∧ s = s1⊕s2

∧dom(s1) = var(S) ∧ dom(s2) = var(S)′

∧ v(h1, s(~x)) and v(h2, s(~x
′)) are defined

iff {Observation above}
∃s1, s2, h1, h2 : h = h1⊕h2 ∧ s = s1⊕s2

∧dom(s1) = var(S) ∧ dom(s2) = var(S)′

∧ reach(ran(si) ∩ Loc − {nil}, hi) ⊆ dom(hi) for i ∈ {1, 2}
iff {Def. of ⊕ and var(si, hi) = dom(si)}
∃s1, s2, h1, h2 : (s, h) = (s1, h1)⊕(s2, h2)

∧ var(s1, h1) = var(S) ∧ var(s2, h2) = var(S)′ (4)

We now prove the correctness of Isl(I):

(s, h) |= Isl(I)
iff {Semantics}
∃ ~xs, ~xs′ :
∃h1, h2 : h = h1⊕h2 : (∀i : 1 ≤ i ≤ n : xsi = v(h1, s(xi)))

∧ (∀i : 1 ≤ i ≤ n : xs′i = v(h2, s(x
′
i)))

∧ (s, h) |= Iv( ~xs, ~xs′, I)
iff {Def. of Iv and equality on vectors}
∃ ~xs, ~xs′ :
∃h1, h2 : h = h1⊕h2 : ~xs = v(h1, s(~x)) ∧ ~xs′ = v(h1, s(~x

′))
∧ (〈v(µ, ~y), ~xs〉, 〈v(µ, ~y′), ~xs′〉) ∈ I
iff {v(h1, s(x))=v((s, h), x) and v(h2, s(x

′))=v((s, h), x′)}
∃ ~xs, ~xs′ :
∃h1, h2 : h = h1⊕h2 : ~xs = v(h1, s(~x)) ∧ ~xs′ = v(h1, s(~x

′))
∧ (〈v(µ, ~y), v(µ, ~x)〉, 〈v(µ, ~y′), v(µ, ~x′)〉) ∈ I
iff {∃v : f(z) = v iff f(z) is defined, and Def. of ∼I

ξ }
∃h1, h2 : h = h1⊕h2 : v(h1, s(~x)) and v(h2, s(~x

′)) are defined
∧ (s, h) ∼I

ξ (s, h)
iff { Remark (4) }
(s, h) ∼I

ξ (s, h)∧
∃s1, s2, h1, h2 : (s, h) = (s1, h1)⊕(s2, h2)

∧ var(s1, h1) = var(S) ∧ var(s2, h2) = var(S)′

In the following we prove correctness and complete-
ness of the characterisation in Separation Logic.

S is TI (I1, I2)-secure
iff {Theorem 3.2}
∀µ1, µ2, µ

′
1, µ

′
2 :

var(µ1) = var(µ′
1) = var(S) ∧ var(µ2) = var(µ′

2) = var(S)′ :
`

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S ; S[ξ], µ1⊕µ2)Ã
∗ (

√
, µ′

1⊕µ′
2)
´

⇒ µ′
1⊕µ′

2 ∼I2

ξ µ′
1⊕µ′

2

iff {Logic}
∀µ, µ′ :
(∃µ1, µ2, µ

′
1, µ

′
2 : µ = µ1⊕µ2 ∧ µ′ = µ′

1⊕µ′
2 ∧

var(µ1) = var(µ′
1) = var(S) ∧ var(µ2) = var(µ′

2) = var(S)′)

⇒
`

µ ∼I1

ξ µ ∧ (S ; S[ξ], µ)Ã∗ (
√

, µ′)
´

⇒ µ′ ∼I2

ξ µ′

iff {Existence of µ′
1, µ

′
2 granted by Fact 1.1, and logic}

∀µ, µ′ :
`

(∃µ1, µ2 : µ=µ1⊕µ2 ∧ var(µ1)= var(S) ∧ var(µ2)= var(S)′)

∧ µ ∼I1

ξ µ ∧ (S ; S[ξ], µ)Ã∗ (
√

, µ′)
´

⇒ µ′ ∼I2

ξ µ′ ∧
(∃µ′

1, µ
′
2 : µ′=µ′

1⊕µ′
2 ∧ var(µ′

1)= var(S) ∧ var(µ′
2)= var(S)′)

iff {Characterisation of Isl}
∀µ, µ′ :

`

µ |= Isl(I1) ∧ (S ; S[ξ], µ)Ã∗ (
√

, µ′)
´

⇒ µ |= Isl(I2)
iff {Separation Logic is sound and complete}
{Isl(I1)}S ; S[ξ] {Isl(I2)} is provable



D. Characterisation of security in CTL:
proof for the termination sensitive case

S is TS (I1, I2)-secure
iff {Cor. 1}
S .≈

id,I1

id,I2
S[ξ]

iff {Def. 2}
∀µ1, µ2, µ

′
1 : var(µ1)= var(µ′

1)= var(S) ∧ var(µ2)= var(S)′ :

µ1⊕µ2 ∼I1

ξ µ1⊕µ2 ∧ (S . S[ξ], µ1⊕µ2)Ã
∗ (S[ξ], µ′

1⊕µ2)

⇒ ∃µ′
2 : var(µ′

2) = var(S)′ :

(S[ξ], µ′
1⊕µ2)Ã

∗ (
√

, µ′
1⊕µ′

2) ∧ µ′
1⊕µ′

2 ∼I2

ξ µ′
1⊕µ′

2

iff {Satisfaction of Ind, end, and Fact 1.1}
∀µ1, µ2, µ

′
1 : var(µ1)= var(µ′

1)= var(S) ∧ var(µ2)= var(S)′ :
`

(S . S[ξ], µ1⊕µ2) |= Ind[I1] ∧
(S . S[ξ], µ1⊕µ2)Ã

∗ (S[ξ], µ′
1⊕µ2)

´

⇒ ∃c : (S[ξ], µ′
1⊕µ2)Ã

∗ c ∧ c |= Ind[I2] ∧ end
iff {Semantics of EF and logic}
∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :
(S . S[ξ], µ1⊕µ2) |= Ind[I1]
⇒ ∀µ′

1 : var(µ′
1) = var(S) :

(S . S[ξ], µ1⊕µ2)Ã
∗ (S[ξ], µ′

1⊕µ2)
⇒ (S[ξ], µ′

1⊕µ2) |= EF(Ind[I2] ∧ end)
iff {Satisfaction of mid, Fact 1.1, and logic}
∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :
(S . S[ξ], µ1⊕µ2) |= Ind[I1]
⇒ ∀c : (S . S[ξ], µ1⊕µ2)Ã

∗ c
⇒ c |= ( mid → EF(Ind[I2] ∧ end) )

iff {Semantics of AG and →}
∀µ1, µ2 : var(µ1) = var(S) ∧ var(µ2) = var(S)′ :
(S . S[ξ], µ1⊕µ2) |=

Ind[I1] → AG( mid → EF(Ind[I2] ∧ end) )
iff {Notation considering that every µ can be separated }
S . S[ξ] |= Ind[I1] → AG( mid → EF(Ind[I2] ∧ end) )


